Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model.
نویسندگان
چکیده
Cerebral hypoxia-ischemia (HI) represents a major cause of brain damage in the term newborn. This study aimed to examine the short and long-term neuroprotective effect of hydrogen saline (H(2) saline) using an established neonatal HI rat pup model. Seven-day-old rat pups were subjected to left common carotid artery ligation and then 90 min hypoxia (8% oxygen at 37 degrees C). H(2) saturated saline was administered by peritoneal injection (5 ml/kg) immediately and again at 8 h after HI insult. At 24 h after HI, the pups were decapitated and brain morphological injury was assessed by 2,3,5-triphenyltetrazolium chloride (TTC), Nissl, and TUNEL staining. Acute cell death, inflammation and oxidative stress were evaluated at 24 h by studying caspase-3 activity, MDA measurement as well as Iba-1 immunochemistry in the brain. At 5 weeks after HI, spontaneous activity test and Morris water maze test were conducted. We observed that H(2) saline treatment reduced the caspase activity, MDA, Iba-1 levels, the infarct ratio, and improved the long-term neurological and neurobehavioral functions. H(2) saline has potentials in the clinical treatment of HI and other ischemia-related cerebral diseases.
منابع مشابه
Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifesta...
متن کاملNanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia and ischemia.
BACKGROUND AND PURPOSE Erythropoietin (EPO) has been demonstrated to possess significant neuroprotective effects in stroke. We determined if the nano-drug form of human recombinant EPO (PLGA-EPO nanoparticles [PLGA-EPO-NP]) can enhance neuroprotection at lower dosages versus human recombinant EPO (r-EPO). METHODS Established neonatal rat model of unilateral ischemic stroke was used to compare...
متن کاملPotential application of hydrogen in traumatic and surgical brain injury, stroke and neonatal hypoxia-ischemia
This article summarized findings of current preclinical studies that implemented hydrogen administration, either in the gas or liquid form, as treatment application for neurological disorders including traumatic brain injury (TBI), surgically induced brain injury (SBI), stroke, and neonatal hypoxic-ischemic brain insult (HI). Most reviewed studies demonstrated neuroprotective effects of hydroge...
متن کاملP 40: Neuroprotective Effects of Saffron Extract in Rat Brain Under Ischemia Reperfusion Model
Introduction: There are several different molecular pathways in tissue damage by Ischemic Brain Injury. The use of antioxidants and free radical scavengers are a matter of attention by some researchers. Crocus sativus (saffron) is used previously for protective effects in ischemia state by some researchers. To assess pathologic aspects of neuroprotection of saffron in some susceptible brain are...
متن کاملHydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model
Hydrogen gas is neuroprotective in cerebral ischemia animal models. In this study, we tested the neuroprotective effects of hydrogen saline, which is safe and easy to use clinically, in a rat model of middle cerebral artery occlusion (MCAO). Sprague-Dawley male rats weighting 250-280 g were divided into sham, MCAO plus hydrogen saline and MCAO groups, and subjected to 90-min ischemia followed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1256 شماره
صفحات -
تاریخ انتشار 2009